
The IJICS (International Journal of Informatics and Computer Science) ISSN 2548-8384 (online)

Vol 3 No 2, September 2019 ISSN 2548-8449 (print)

 Page 34 – 40

 Doi 10.30865/ijics.v3i2.1371

Page | 34

The IJICS | Khairi Ibnutama | http://ejurnal.stmik-budidarma.ac.id/index.php/ijics

Web-Based College Student Assignment File Collection Application

Using Google Drive API

Khairi Ibnutama*, Hendryan Winata, Masyuni Hutasuhut

Department of Information System, STMIK Triguna Dharma, North Sumatera, Indonesia

Email: 1*mr.ibnutama@gmail.com

Abstract−The use of internet media, especially cloud storage as a practical solution in information and communication should

be able to be applied in academics, especially in the scope of teaching and learning. By using cloud storage as a communication
medium, especially in sending data in the form of assignments files can facilitate lecturers and students in carrying out one of

the mandatory activities in lectures, namely the collection of assignments. The main problem that often occurs is the storage

capacity provided by hosting services is very limited, so storing large amounts of files will require large costs as well. Google

Drive provides an API driven file storage service that makes it easy for users to create applications that can communicate and
interact with 15 GB free storage services. The free service is expected to facilitate teaching and learning activities in lectures,

especially in the collection of student assignments.

Keywords: API, Google Drive, Academics, Website, Application

1. INTRODUCTION

STMIK Triguna Dharma is an educational institution where lecturers who teach are required to give assignments

to students in one semester. The value of the assignment is one of several data values inputted on the student grade

form. The problem of time is the main factor of the difficulty of students to collect assignments, where students

must meet the lecturer concerned to submit the results of the work done. Matching the schedule of meetings

between students and lecturers becomes difficult because of the tight schedule of the lecturers concerned. But if

internet media can be optimized for use, of course time is not a problem in gathering student assignments. For this

reason, this research is expected to make it easier for students to collect assignment files, as well as facilitate

lecturers in managing the assignments list for each class.

Utilization of online media as a means of collecting files is certainly constrained by the limitations of

hosting server capacity. Therefore, by using the Google Drive as a cloud storage, it is expected to be a solution as

a media choice for storing assignment files collected by students. Google, which is a provider of services and

internet products, provides free file storage media services with a capacity of 15 GB under the name Google

Drive[1]. These services can be used as a substitute for limited storage provided by paid hosting. Also Google

Drive does not limit the types of files that can be uploaded to the server as long as the file is not detected by viruses

and malware.

Google Drive provides Application Programming Interface (API) facilities that allow users to create

applications that can communicate and interact with these services[2]. The API facility enables the creation of a

student assignment file collection website application where each file uploaded by a student will automatically be

saved in the lecturer's Google Drive account. Utilization of the Google Drive API is expected to be an easy and

practical solution for lecturers and students in carrying out teaching and learning activities.

Application interface is made using the PHP programming language and JavaScript on web pages. Student

data in the form of ID number, student name, and class name will be stored on the server database, while

assignment files uploaded on the website will be transferred and stored to Google Drive using the API. After that

the url file address obtained will be stored in the server database.

2. THEORY

2.1 PHP MySQL

PHP or Hypertext Preprocessor is a server-side programming language created specifically for websites. The

program code in PHP will be interpreted on the web server and displayed in HTML or other output that can be

seen by visitors[3]. In this research, the PHP CodeIgniter framework uses the PHP MVC (Model-View-Controller)

system for server-side scripting.

PHP is designed to be able to accelerate the construction process of a website, and is enriched with many

libraries that can interact with databases. One of the most commonly used libraries in a database is the original

MySQL API library[4]. PHP is often paired with MySQL as an application database as shown in Fig. 1. Special

http://dx.doi.org/10.30865/ijics.v3i2.1371
http://ejurnal.stmik-budidarma.ac.id/index.php/ijics

The IJICS (International Journal of Informatics and Computer Science) ISSN 2548-8384 (online)

Vol 3 No 2, September 2019 ISSN 2548-8449 (print)

 Page 34 – 40

 Doi 10.30865/ijics.v3i2.1371

Page | 35

The IJICS | Khairi Ibnutama | http://ejurnal.stmik-budidarma.ac.id/index.php/ijics

commands in PHP linking web pages with MySQL database to be sent to web pages in HTML form in response

to data requests [3].

Figure 1. PHP and MySQL Data Communication

In other studies[5] also explained that, one possible way to simplify the website development process for

developers without having to create an intermediary agent or custom service is to create a "blackbox" that takes

input in the form of SQL statements that will communicate with the database and display the data becomes various

representations such as interactive tables or graphs.

2.2 Google Drive API

Google Drive is a storage medium in the form of cloud applications made by Google that can be integrated with

many other Google applications. Google Drive was launched on April 24, 2012 which is an update of Google Docs

with a capacity of up to 15GB including Gmail and Google Photos[1]. Google Drive services can be accessed and

used with only one registered Google account, either through the web platform, Android or iOS[6].

APIs are rules that can be used to access a software or application service. The API functions as a software

interface or application service so that it can be accessed by other software or applications. API services can be

analogous to interactions between humans and computers[6][7].

The Google Drive Software Development Kit (SDK) includes an HTTP API that lets users or developers

integrate, modify, and access the files stored in a user's Drive with their own third party applications. This gives

users and app developers the ability to use multiple cloud apps to access and interact with their files that are stored

in a single location in the cloud. Other studies[8] also mention the use of Google Api for PHP-based web

interoperability models with Google Drive. This study discusses the use of Google Drive Api in supporting the

interoperability model of the existing system using the UML (Unified Modeling Language) tool and the Google

Drive API as its implementation system. Daryabar[9] also mentioned in his research that metadata files uploaded

on Google Drive can be used as forensic investigation material. Thus a lot of information related to files can be

saved and used if needed later.

3. RESULT AND DISCUSSION

Web applications that will be made are divided into two stages, namely system planning and API communication

based on theories that has been mentioned before.

3.1 System Planning

Planning is the initial stage in making an information system consisting of a database and application interface to

make the best user experience as possible.

3.1.1 Database Design

In accordance with the needs of the system to be created, a database design is carried out containing tables that

serve to store information of application and students who collect assignments.

Table 1. Tables in the kumpultugas Database

a. Userinfo Table

Database : kumpultugas

Table Name : userinfo

No. Table Name

1 userinfo

2 tugasinfo

http://dx.doi.org/10.30865/ijics.v3i2.1371
http://ejurnal.stmik-budidarma.ac.id/index.php/ijics

The IJICS (International Journal of Informatics and Computer Science) ISSN 2548-8384 (online)

Vol 3 No 2, September 2019 ISSN 2548-8449 (print)

 Page 34 – 40

 Doi 10.30865/ijics.v3i2.1371

Page | 36

The IJICS | Khairi Ibnutama | http://ejurnal.stmik-budidarma.ac.id/index.php/ijics

Primary Key : id

Description : To store user (lecturer) information along with application settings information.

Table 2. Userinfo Table

b. Tugasinfo Table

Database : kumpultugas

Table Name : tugasinfo

Primary Key : id

Description : To store student assignments file information.

Table 3. Tugasinfo Table

3.1.2 Interface Design

At this stage the application interface is designed from the front-end, which is the page/section accessed by students

to collect assignments, and the back-end as the lecturer page/section.

a. Front-end Application

Front-end application is a page that contains a form of filling student data that will upload the assignment file.

The form uses the attribute enctype="multipart/form-data" as an HTML facility to handle HTTP request for

uploading files on web pages[10].

Figure 2. Front-end Form Application Design

b. Back-end Application

The back-end application is a page that can only be accessed by lecturers containing information on student

assignment files that have been collected on the website along with the assignments file link stored on Google

Drive. This page contains CRUD operation for managing that information[4][5] that displayed in the form of

a table[5].

Name Type Extra Action

id int(8) AUTO_INCREMENT Primary

username varchar(100) - -

password varchar(255) - -

email varchar(100) - Unique

fullname varchar(100) - -

scripturl text - -

Name Type Extra Action

id int(8) AUTO_INCREMENT Primary

dosen_id int(8) - Foreign Key

nim varchar(12) - -

std_name varchar(100) - -

class_name varchar(100) - -

session_asg int(2) - -

uploaded_at timestamp - -

fileurl text - -

http://dx.doi.org/10.30865/ijics.v3i2.1371
http://ejurnal.stmik-budidarma.ac.id/index.php/ijics

The IJICS (International Journal of Informatics and Computer Science) ISSN 2548-8384 (online)

Vol 3 No 2, September 2019 ISSN 2548-8449 (print)

 Page 34 – 40

 Doi 10.30865/ijics.v3i2.1371

Page | 37

The IJICS | Khairi Ibnutama | http://ejurnal.stmik-budidarma.ac.id/index.php/ijics

Figure 3. Back-end Application Interface

3.2 API Communication

Communication between the web application and the Google Drive API is done on the form contained in the

application front-end based on application flowchart that can be seen in Fig 4.

Figure 4. Application Flowchart

Google Drive API using Google Script has two functions that can be used for collecting information sent

from another app. When a user visits an application sends the script an HTTP GET request, Google Script runs the

function doGet(e). When an application sends the script an HTTP POST request, Google Script runs doPost(e)

instead. The e argument represents an event parameter that can contain information sent from application about

any request parameters in both cases.

Figure 5. Google Script Argument

Google Script can be created and deployed from Google Drive "New" options on https://drive.google.com

after the user login using their Google Account. The deployed script result a script URL used for any other third

party applications to interact with Google Drive that linked to the script.

http://dx.doi.org/10.30865/ijics.v3i2.1371
http://ejurnal.stmik-budidarma.ac.id/index.php/ijics

The IJICS (International Journal of Informatics and Computer Science) ISSN 2548-8384 (online)

Vol 3 No 2, September 2019 ISSN 2548-8449 (print)

 Page 34 – 40

 Doi 10.30865/ijics.v3i2.1371

Page | 38

The IJICS | Khairi Ibnutama | http://ejurnal.stmik-budidarma.ac.id/index.php/ijics

4. IMPLEMENTATION

The steps for implementing web application communication with Google Drive are based on the following chart.

Figure 6. Application Workflow

4.1 Collecting and Send Information

Information provided by student on front-end application are collected using JavaScript and submitted to script

URL using POST method.

function UploadFile(){
 var reader = new FileReader();
 var file = document.getElementById('filetugas').files[0];
 reader.onload = function(){
 document.getElementById('fileContent').value=reader.result;
 document.getElementById('fileName').value=file.name;
 document.getElementById('formName').submit();
 }
 reader.readAsDataURL(file);
}

4.2 Retrieve Information on Google Script

Informations that sent from application to Google Script are retrieved using doPost(e) function to be managed as

folder and file name.

function doPost(e){
 var data = e.parameter.fileContent;
 var fname = e.parameter.fileName;
 var ext = fname.substring(fname.lastIndexOf('.')+1, fname.length) || fname;
 var nim = e.parameter.nim;
 var stdName = e.parameter.stdName;
 var clsName = e.parameter.clsName;
 var sesAsg = 'TUGAS ' + e.parameter.sessionAsg;
 var upload = uploadToGdrive(data,fname,ext,nim,stdName,clsName,sesAsg,e);
}

4.3 Create Folder and Storing File to Google Drive

Informations that has been retrieved are used to create folder on Google Drive and rename the file based on

information provided.

function uploadToGdrive(data,fname,ext,nim,stdName,clsName,sesAsg,e){

http://dx.doi.org/10.30865/ijics.v3i2.1371
http://ejurnal.stmik-budidarma.ac.id/index.php/ijics

The IJICS (International Journal of Informatics and Computer Science) ISSN 2548-8384 (online)

Vol 3 No 2, September 2019 ISSN 2548-8449 (print)

 Page 34 – 40

 Doi 10.30865/ijics.v3i2.1371

Page | 39

The IJICS | Khairi Ibnutama | http://ejurnal.stmik-budidarma.ac.id/index.php/ijics

 var parent = DriveApp.getFoldersByName('FILES');
 if(parent.hasNext()){
 parent.next();
 createFolder(sesAsg);
 createFolder(clsName);
 var file = createFile(blob);
 var fUrl = file.getUrl();
 return fUrl;
 }
}

4.4 Send Response to Application

After file successfully uploaded to Google Drive, a line of response is sent as a feedback from Google Script to

application. The response determine wether student information will be saved to database or not.

if(fUrl){
 var resp = "<script>window.top.location.href='"+SERVER+"/savetugas/?nim="
 +nim+"&stdName="+name+"&cls="+clsName+"&ses="+sesAsg+"&url="
 +fUrl+"';</script>";
}
return HtmlService.createHtmlOutput(resp);

4.5 Store Response to Database

Response sent from Google Script are retrieved on web application contain information related to file that has been

submitted. The information will be processed using PHP GET method and store to database.

public function savetugas (){
 $data = array(
 'nim' => $this->input->get('nim'),
 'std_name => $this->input->get('stdName'),
 'class_name' => $this->input->get(cls),
 'session_asg' => $this->input->get(ses),
 'fileurl' => $this->input->get(url)
);
}

Informations that has been stored will be accessed again on the back-end page for further management.

5. CONCLUSION

Collection of student assignment files using Google Drive as a file storage medium allows to overcome the problem

of capacity limitations provided by paid or free hosting. In addition, by utilizing Google's cloud computing and

Firebase services, this research can be further developed by adding a real-time notification feature every time a

student collects an assignment.

REFERENCES

[1] R. Cahaya, I. Made, and A. A., “Data Exchange Service using Google Drive API”, Int. Jrnl. of Comp. App., vol. 154, no.

7, pp. 12-16, 2016.
[2] S. Challita, F. Zalila, C. Gourdin, and P. Merle, “A Precise Model for Google Cloud Platform”, IC2E, pp. 177-183, 2018.

[3] Hardono, I. Sujandari, A. Rachman, Y. Panjaitan, and A. Rosdiyah, “Develompent of Theses Categorization System

Search Engine using PHP and MySQL”, ICITSI, pp. 194-199, 2017.

[4] D. Anderson and M. Hills, “Query Construction Patterns in PHP”, SANER, pp. 452-456, 2017.
[5] E. Hua, V. Nen, F. Tee, and O. Ann, “Pigeon-Chart: A Customized HTML Element for Data Visualization in Data-

Driven Web Application Using AngularJS, HighCharts, UnderscoreJS and PHP”, ICCIS, pp. 247-252, 2018.

[6] V. Raymond and E. Sushmitha, “Google Drive Based Secured Anti-Theft Android Application”, ICIOT, pp. 1-8, 2017.

[7] W. Li, C. Yen, Y. Lin, S. Tung, and S. Huang, “JustIoT Internet of Things based on the Firebase real-time database”,
SMILE, pp. 43-47, 2018.

[8] U. Rahardja, Q. Aini, and N. Santoso, “Pengintegrasian YII Framework Berbasis API pada Sistem Penilaian Absensi”,

SISFOTENIKA, vol. 8, no. 2, pp. 140-152, 2018.

http://dx.doi.org/10.30865/ijics.v3i2.1371
http://ejurnal.stmik-budidarma.ac.id/index.php/ijics

The IJICS (International Journal of Informatics and Computer Science) ISSN 2548-8384 (online)

Vol 3 No 2, September 2019 ISSN 2548-8449 (print)

 Page 34 – 40

 Doi 10.30865/ijics.v3i2.1371

Page | 40

The IJICS | Khairi Ibnutama | http://ejurnal.stmik-budidarma.ac.id/index.php/ijics

[9] F. Daryabar, A. Dehghantanha, B. Eterovic-Soric, and K. Choo, “Forensic Investigation of OneDrive, Box, GoogleDrive

and Dropbox Applications on Android and iOS Devices”, Australian Jrnl. of Forensic Sciences, vol. 48, no. 6, pp. 615-

642, 2016.

[10] A. Fink, “A Mobile Application for Crowdsourced Acquisition of Urban Street-View Pedestrian Facility Data”, Honors
Theses, vol. 5, no. 654, pp. 1-39, 2019.

http://dx.doi.org/10.30865/ijics.v3i2.1371
http://ejurnal.stmik-budidarma.ac.id/index.php/ijics

